Modal Information Logics

Søren Brinck Knudstorp
Annual VvL Seminar, Utrecht University, Master's Thesis Award Presentation Supervised by Johan van Benthem and Nick Bezhanishvili

December 08, 2023
University of Amsterdam

Plan for the talk

- Introducing the logics
- Stating the problems
- Outlining the strategy
- Solving the problems using the strategy

Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi,
$$

and the semantics of '(sup)' is:

$$
w \Vdash\langle\sup \rangle \varphi \psi \text { iff } \begin{array}{r}
\exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Definition (frames and logics)

(Pre) (W, \leq) is a preorder (refl., tr.);

(Pos) (W, \leq) is a poset (anti-sym. preorder); and

$$
(\text { Sem })(W W, \leq) \text { is a ioin-semilattice (poset w. all bin joins) }
$$

Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi,
$$

and the semantics of '(sup)' is:

$$
\begin{array}{r}
w \Vdash\langle\sup \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Example

Definition (frames and logics)

Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi
$$

and the semantics of '(sup)' is:

$$
\begin{array}{r}
w \Vdash\langle\sup \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Example

Definition (frames and logics)

Three classes of frames (W, \leq), namely those where

$$
\begin{aligned}
& \text { (Pre) }(W, \leq) \text { is a preorder (refl., tr.); } \\
& \text { (Pos) }(W, \leq) \text { is a poset (anti-sym. preorder); and } \\
& \text { (Sem) }(W, \leq) \text { is a join-semilattice (poset w. all bin. joins) }
\end{aligned}
$$

Resulting in the logics $M I L_{\text {pre }}, M I L_{\text {pos }}, M I L_{\text {sem }}$, respectively.

Motivation

Why MILs?

```
    with other logics (e.g., truthmaker semantics).
    Introduced to model a theorv of information (bv van Benthem (1996))
    Modestly extend S4 [MILpre, MILpos].
```

What in particular?
Guided hy two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing $M I L_{\text {pre }}$ and $M I L_{\text {pos; }}$ and
(D) nroving (un)decidability

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker semantics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend S4 [MIL pre , MIL $L_{\text {pos }}$].

What in paricular?

Guided by two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing M1L Pre and M11 posi and
(D) proving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker semantics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend S4 [MILpre, MILpos].

What in particular?

Guided hy two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing $M I L_{\text {pre }}$ and $M I L_{\text {pos; }}$ and
(D) nroving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker semantics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend $\mathbf{S 4}$ [MIL ${ }_{\text {pre }}$, MIL $_{\text {Pos }}$].

What in particular?

Guided by two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing M1L Pre and M11 posi and
(D) proving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker semantics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend $\mathbf{S 4}$ [MIL ${ }_{\text {pre }}$, MIL $_{\text {Pos }}$].

What in particular?
Guided by two central problems (posed in van Benthem (2017, 2019)), namely
(A) axiomatizing $M I L_{\text {Pre }}$ and $M I L_{\text {Pos }}$; and
(D) proving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker semantics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend $\mathbf{S 4}$ [MIL ${ }_{\text {pre }}$, MIL $_{\text {Pos }}$].

What in particular?
Guided by two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing $M I L_{\text {Pre }}$ and $M I L_{\text {Pos }}$; and
(D) proving (un)decidability.

Initial study (MIL Pre and MIL $_{\text {Pos }}$)

Proposition

MII Slack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):
(1) We axiomatize $M I L_{\text {pre }}$ (and deduce $M I L_{\text {pre }}=M I L_{\text {pos }}$)
(2) Use the axiomatization to find another class of structures C for which $\log (\mathcal{C})=M I L_{\text {pre }}$.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

Initial study (MIL Pre and MIL $_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):
(1) We axiomatize MIL Pre (and deduce MIL Pre $=$ MIL pos).
(2) Use the axiomatization to find another class of structures C for which $\log (\mathcal{C})=$ MILpre.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

Initial study (MIL Pre and $M I L_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):
(1) We axiomatize $M I L_{\text {pre }}$ (and deduce $M I L_{\text {pre }}=M I L_{\text {Pos }}$).
(2) Use the axiomatization to find
which $\log (\mathcal{C})=$ MIL $_{\text {pre }}$.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability

Initial study (MIL Pre and MIL $_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):
(1) We axiomatize $M I L_{\text {pre }}$ (and deduce $M I L_{\text {pre }}=M I L_{\text {Pos }}$).
(2) Use the axiomatization to find another class of structures \mathcal{C} for which $\log (\mathcal{C})=$ MIL Pre .
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

Initial study (MIL Pre and $M I L_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):
(1) We axiomatize $M I L_{\text {pre }}$ (and deduce $M I L_{\text {pre }}=M I L_{\text {Pos }}$).
(2) Use the axiomatization to find another class of structures \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

(1): axiomatizing MIL $_{\text {Pre }}$

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $\langle P\rangle\langle P\rangle p \rightarrow\langle P\rangle p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness \checkmark

For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We
construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so
that $x \neq \sup _{n+1}\{y, z\}$.
- Similarly, for $\langle\sup \rangle \chi \chi^{\prime} \in l_{n}(x)$.

(1): axiomatizing MIL pre

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $\langle P\rangle\langle P\rangle p \rightarrow\langle P\rangle p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\mathrm{I}$
(Ind)
Sup pose (F_{n}, l_{n}) has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg(\sup) \psi \psi^{\prime} \in \ln (x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so
that $x \neq \sup _{n+1}\{y, z\}$.
- Similarly, for $\langle\sup \rangle \chi \chi^{\prime} \in \ln (x)$.

(1): axiomatizing MIL

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $\langle P\rangle\langle P\rangle p \rightarrow\langle P\rangle p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{I} n, l_{n}\right)$ so
that $x \neq \sup _{n+1}\{y, z\}$.

(1): axiomatizing MIL pre

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $\langle P\rangle\langle P\rangle p \rightarrow\langle P\rangle p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so
that $x \neq \sup _{n+1}\{y, z\}$.

(1): axiomatizing MIL pre

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $\langle P\rangle\langle P\rangle p \rightarrow\langle P\rangle p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness

For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$,
that $x \neq \sup _{n+1}\{y, z\}$

(1): axiomatizing MIL pre

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $\langle P\rangle\langle P\rangle p \rightarrow\langle P\rangle p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness

For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so that $x \neq \sup _{n+1}\{y, z\}$.

(1): axiomatizing MIL

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $\langle P\rangle\langle P\rangle p \rightarrow\langle P\rangle p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness

For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so that $x \neq \sup _{n+1}\{y, z\}$.
- Similarly, for $\langle\sup \rangle \chi \chi^{\prime} \in l_{n}(x)$.

Completeness of MIL pre (cont.)

Example

(1): axiomatizing MIL $_{\text {Pre }}$

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
\text { (Re.) } & p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
\text { (4) } & \langle P\rangle\langle P\rangle p \rightarrow\langle P\rangle p \\
\text { (Co.) } & \langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
\text { (Dk.) } & (p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

About the proof

Soundness: routine.
Completeness: step-by-step method.

(1): axiomatizing MIL $_{\text {Pre }}$

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
\text { (Re.) } & p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
\text { (4) } & \langle P\rangle\langle P\rangle p \rightarrow\langle P\rangle p \\
\text { (Co.) } & \langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
\text { (Dk.) } & (p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

About the proof

Soundness: routine.
Completeness: step-by-step method.

Corollary

As a corollary we get that MILpre $=$ MILpos.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (wrt the class of definition) miaht not be verv telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {pre }}$:
(i) Nothing in the ax. of MIL pre $^{\text {necessitating ' }\langle\text { sup }\rangle \text { ' to be interpreted }}$ using a supremum relation.
(ii) Canon. re-interpretation
where $C \subseteq W^{3}$ is an arbitrary relation
(ii) Then $\operatorname{Tng}(C)=$ MII nem $^{\text {in }}$
(3) Decidability through FMP on C:
(i) On \mathcal{C}, we get the FMP through filtration
(ii) And this imnlies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced'logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL ${ }_{\text {pre }}$ necessitating ' \langle sup \rangle ' to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not
having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\},
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(ii) And this implies decidability.

Thus, we have solved both (A) and (D)

Gen. takeaway: When dealing with 'semantically introduced' logics, not
having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D)

Gen. takeaway: When dealing with 'semantically introduced' logics, not
having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not
having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\},
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).
Gen. takeaway: When dealing with 'semantically introduced' logics,

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL ${ }_{\text {Pre }}$ necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).
Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

How about join-semilattices (i.e., MIL sem)?

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

'Indeterministic step-by-step' (MILsem)

Model constr.

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)
M
'Indeterministic step-by-step' $\left(M I L_{\text {sem }}\right)$
Standard step-by-step (e.g., MILpre)

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)
\mathbb{M}
-

Standard step-by-step (e.g., MIL ${ }_{\text {pre }}$)

'Indeterministic step-by-step' (MILsem)

Model constr.

Axioms:
π_{0}

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):
Henkin (e.g., K)

Standard step-by-step (e.g., MIL pre)

M

'Indeterministic step-by-step' (MIL ${ }_{\text {sem }}$)

Summary

What the thesis included:

- Surveyed the landscape of MILs on preorders and posets. ${ }^{1}$
- Made crossings with the Lambek Calculus and truthmaker semantics. ${ }^{2}$
- Axiomatized MILsem.

What came next:

- MIL $L_{\text {sem }}$ is not finitely axiomatizable.
- MIL Sem is undecidable (and so are Hyperboolean algebras and more).
- Urquhart's relevance logic \mathbf{S} is undecidable.

[^0]
References I

埥 Knudstorp，S．B．（2023a）．＂Logics of Truthmaker Semantics：
Comparison，Compactness and Decidability＂．In：Synthese（cit．on p．41）．
－（2023b）．＂Modal Information Logics：Axiomatizations and Decidability＂．In：Journal of Philosophical Logic（cit．on p．41）．

國 Van Benthem，J．（1996）．＂Modal Logic as a Theory of Information＂． In：Logic and Reality．Essays on the Legacy of Arthur Prior．Ed．by J．Copeland．Clarendon Press，Oxford，pp．135－168（cit．on pp．6－11）．

戋－（10／2017）．＂Constructive agents＂．In：Indagationes Mathematicae 29．Dol：10．1016／j．indag．2017．10．004（cit．on pp．6－11）．

References II

围 Van Benthem, J. (2019). "Implicit and Explicit Stances in Logic". In: Journal of Philosophical Logic 48.3, pp. 571-601. DoI: 10.1007/s10992-018-9485-y (cit. on pp. 6-11).

Thank you!

[^0]: ${ }^{1}$ See SBK (2023b).
 ${ }^{2}$ See SBK (2023a) (or thesis) for this, including proofs of FMP, decidability (and compactness) of a family of truthmaker logics.

