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Plan for the talk

– Introducing the logics
– Stating the problems
– Outlining the strategy
– Solving the problems using the strategy
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Defining (the basic) modal information logics (MILs)

Definition (language and semantics)
The language is given by

φ ::= ⊥ | p | ¬φ | φ ∨ ψ | ⟨sup⟩φψ,

and the semantics of ‘⟨sup⟩’ is:

w ⊩ ⟨sup⟩φψ iff ∃u, v(u ⊩ φ; v ⊩ ψ;

w = sup{u, v})

Example

w ⊩ ⟨sup⟩pq

u ⊩ p v ⊩ q

Definition (frames and logics)
Three classes of frames (W,≤), namely those where

(Pre) (W,≤) is a preorder (refl., tr.);
(Pos) (W,≤) is a poset (anti-sym. preorder); and
(Sem) (W,≤) is a join-semilattice (poset w. all bin. joins)

Resulting in the logics MILPre,MILPos,MILSem, respectively.
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Motivation

Why MILs?

– Connect with other logics (e.g., truthmaker semantics).
– Introduced to model a theory of information (by van Benthem (1996)).
– Modestly extend S4 [MILPre,MILPos].

What in particular?

Guided by two central problems (posed in van Benthem (2017, 2019)), namely

(A) axiomatizing MILPre and MILPos; and
(D) proving (un)decidability.
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Initial study (MILPre and MILPos)

Proposition
MILs lack the finite model property (FMP) w.r.t. their classes of
definition.

How we solve (A), and then (D) using (A):

(1) We axiomatize MILPre (and deduce MILPre = MILPos).
(2) Use the axiomatization to find another class of structures C for

which Log(C) = MILPre.
(3) Prove that on C we do have the FMP and deduce decidability.
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(1): axiomatizing MILPre

Axiomatization (soundness and completeness)
MILPre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) p ∧ q → ⟨sup⟩pq
(4) ⟨P ⟩⟨P ⟩p→ ⟨P ⟩p

(Co.) ⟨sup⟩pq → ⟨sup⟩qp
(Dk.) (p ∧ ⟨sup⟩qr) → ⟨sup⟩pq

Proof idea
Soundness
For completeness, let Γ ⊇ Γ0 be an MCS extending some consistent Γ0. We
construct a satisfying model using the step-by-step method:
(Base) Singleton frame F0 := ({x0}, {(x0, x0)}) and ‘labeling’ l0(x0) = Γ.
(Ind) Suppose (Fn, ln) has been constructed.

– If x ∈ Fn and ¬⟨sup⟩ψψ′ ∈ ln(x) but x = supn{y, z} s.t.
ψ ∈ ln(y), ψ′ ∈ ln(z), coherently extend to (Fn+1, ln+1) ⊇ (Fn, ln) so
that x ̸= supn+1{y, z}.
– Similarly, for ⟨sup⟩χχ′ ∈ ln(x).
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Completeness of MILPre (cont.)

Example
x

{⟨sup⟩χ0χ
′
0, ⟨sup⟩χ1χ

′
1} ⊆ l(x)

y

χ0 ∈ l(y)

z

χ′
0 ∈ l(z)

⟨sup⟩-repair⇝⟨sup⟩-repair⇝

¬⟨sup⟩-repair⇝

x

y

χ0 ∈ l(y)

z

χ′
0 ∈ l(z)

z′

χ′
1 ∈ l(z′)

y′

χ1 ∈ l(y′)

x

¬⟨sup⟩ψψ′ ∈ l(x)

y z

ψ ∈ l(z)

z′

ψ′ ∈ l(z′)

y′

d
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(1): axiomatizing MILPre

Axiomatization (soundness and completeness)
MILPre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) p ∧ q → ⟨sup⟩pq
(4) ⟨P ⟩⟨P ⟩p→ ⟨P ⟩p

(Co.) ⟨sup⟩pq → ⟨sup⟩qp
(Dk.) (p ∧ ⟨sup⟩qr) → ⟨sup⟩pq

About the proof
Soundness: routine.
Completeness: step-by-step method.

Corollary
As a corollary we get that MILPre = MILPos.
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(2) and (3): ‘decidability via completeness’

(2) Find another class C for which Log(C) = MILPre:
(i) Nothing in the ax. of MILPre necessitating ‘⟨sup⟩’ to be interpreted

using a supremum relation.
(ii) Canon. re-interpretation:

C := {(W,C) | (W,C) ⊩ (Re.) ∧ (Co.) ∧ (4) ∧ (Dk.)},

where C ⊆W 3 is an arbitrary relation.
(iii) Then Log(C) = MILPre.

(3) Decidability through FMP on C:
(i) On C, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with ‘semantically introduced’ logics, not
having the FMP (w.r.t. the class of definition) might not be very telling.
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How about join-semilattices (i.e., MILSem)?
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Axiomatizing MILSem

Three ways to completeness (some intuitions for our proof):

Henkin (e.g.,K)

M

Standard step-by-step (e.g., MILPre)

M0 M1 M2

· · ·
Mω

‘Indeterministic step-by-step’ (MILSem)

M0

M01

...
...

M0n0

M011...
...
M01n01

M0n01...
...
M0n0n0n0

· · ·

· · ·

· · ·

· · ·

· · ·π0 π1 π2

Model constr.:

Axioms:
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Summary

What the thesis included:

• Surveyed the landscape of MILs on preorders and posets.1

• Made crossings with the Lambek Calculus and truthmaker
semantics.2

• Axiomatized MILSem.

What came next:

• MILSem is not finitely axiomatizable.
• MILSem is undecidable (and so are Hyperboolean algebras and
more).

• Urquhart’s relevance logic S is undecidable.

1See SBK (2023b).
2See SBK (2023a) (or thesis) for this, including proofs of FMP, decidability (and
compactness) of a family of truthmaker logics.
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